An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics

Abstract
The α4 subunit of the neuronal nicotinic acetylcholine receptor is the first gene shown to be involved in a human idiopathic epileptic disease. A missense mutation, leading to the replacement of serine 248 by phenylalanine in the second transmembrane segment, had been detected in patients with autosomal dominant nocturnal frontal lobe epilepsy. The properties of the wild type receptor composed of α4 and β2 subunits and the mutant receptor where α4 subunits carried the mutation at serine 248 were compared by means of cDNA manipulation and expression in Xenopus oocytes. The mutant receptor exhibited faster desensitization upon activation by acetylcholine and recovery from the desensitized state was much slower than in the wild type receptor. We conclude that the reported mutation causes seizures via a diminution of the activity of the α4β2 neuronal nicotinic acetylcholine receptor.