Internal Rotation in Butane

Abstract
Quantum‐mechanical calculations within the Hartree–Fock framework and using two Gaussian basis sets are carried out on several conformations of the butane molecule. The smaller basis set predicts a transgauche barrier of 3.536 kcal/mole, an energy difference of 0.822 kcal/mole between the gauche and trans forms, and a barrier of 6.821 kcal/mole for interconversion of the two gauche conformations. The values of these quantities as given by the larger basis set are 3.619, 0.761, and 6.834 kcal/mole. Taking the angle of rotation about the central bond to be 0 for the trans conformation, the gauche form is predicted to occur at 110.9° for the smaller and at 111.3° for the larger basis set. The barrier to internal rotation of a methyl group is predicted to be 2.92 kcal/mole and 2.94 kcal/mole for the smaller and larger basis sets, respectively.
Keywords