The WW Domain of Dystrophin Requires EF-Hands Region to Interact with β-Dystroglycan
- 1 January 1999
- journal article
- Published by Walter de Gruyter GmbH in Biological Chemistry
- Vol. 380 (4) , 431-42
- https://doi.org/10.1515/bc.1999.057
Abstract
Skeletal muscle dystrophin is a 427 kDa protein thought to act as a link between the actin cytoskeleton and the extracellular matrix. Perturbations of the dystrophin-associated complex, for example, between dystrophin and the transmembrane glycoprotein beta-dystroglycan, may lead to muscular dystrophy. Previously, the cysteine-rich region and first half of the carboxy-terminal domain of dystrophin were shown to interact with beta-dystroglycan through a stretch of fifteen amino acids at the carboxy-terminus of beta-dystroglycan. This region of dystrophin implicated in binding beta-dystroglycan contains four modular protein domains: a WW domain, two putative Ca2+-binding EF-hand motifs, and a putative zinc finger ZZ domain. The WW domain is a globular domain of 38-40 amino acids with two highly conserved tryptophan residues spaced 20-22 amino acids apart. A subset of WW domains was shown to bind ligands that contain a Pro-Pro-x-Tyr core motif (where x is any amino acid). Here we elucidate the role of the WW domain of dystrophin and surrounding sequence in binding beta-dystroglycan. We show that the WW domain of dystrophin along with the EF-hand motifs binds to the carboxy-terminus of beta-dystroglycan. Through site-specific mutagenesis and in vitro binding assays, we demonstrate that binding of dystrophin to the carboxy-terminus of beta-dystroglycan occurs via a beta-dystroglycan Pro-Pro-x-Tyr core motif. Targeted mutagenesis of conserved WW domain residues reveals that the dystrophin/beta-dystroglycan interaction occurs primarily through the WW domain of dystrophin. Precise mapping of this interaction could aid in therapeutic design.Keywords
This publication has 57 references indexed in Scilit:
- The WW Domain of Neural Protein FE65 Interacts with Proline-rich Motifs in Mena, the Mammalian Homolog of DrosophilaEnabledJournal of Biological Chemistry, 1997
- Characterization of the WW Domain of Human Yes-associated Protein and Its Polyproline-containing LigandsJournal of Biological Chemistry, 1997
- Towards prediction of cognate complexes between the WW domain and proline‐rich ligandsFEBS Letters, 1996
- The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules.Proceedings of the National Academy of Sciences, 1995
- Molecular and Structural Basis of Target Recognition by CalmodulinAnnual Review of Biophysics, 1995
- The WW domain: a signalling site in dystrophin?Trends in Biochemical Sciences, 1994
- The ubiquitin-proteasome proteolytic pathwayCell, 1994
- An intact cysteine-rich domain is required for dystrophin function.Journal of Clinical Investigation, 1992
- An efficient method for anchoring fmoc-anino acids to hydroxyl-functionalised solid supportsTetrahedron Letters, 1990
- A cDNA clone from the Duchenne/Becker muscular dystrophy geneNature, 1987