XMM-Newton observations of the Perseus Cluster I: The temperature and surface brightness structure

Abstract
We present preliminary results of the XMM-Newton 50 ksec observation of the Perseus cluster. The global east/west asymmetry of the gas temperature and surface brightness distributions, approximately aligned with the chain of bright galaxies, suggests an ongoing merger, although the modest degree of the observed asymmetry certainly excludes a major merger interpretation. The chain of galaxies probably traces the filament along which accretion has started some time ago and is continuing at the present time. A cold and dense (low entropy) cluster core like Perseus is probably well "protected" against the penetration of the gas of infalling groups and poor clusters whereas in non-cooling core clusters like Coma and A1367, infalling subclusters can penetrate deeply into the core region. In Perseus, gas associated with infalling groups may be stripped completely at the outskirts of the main cluster and only compression waves (shocks) may reach the central regions. We argue that the passage of such a wave(s) can qualitatively explain the overall horseshoe shaped appearance of the gas temperature map (the hot horseshoe surrounds the colder, low entropy core) as well as other features of the Perseus cluster core. As compression waves traverse the cluster core, they can induce oscillatory motion of the cluster gas which can generate multiple sharp "edges", on opposite sides or the central galaxy. Gas motions induced by mergers may be a natural way to explain the high frequency of "edges" seen in clusters with cooling cores.

This publication has 0 references indexed in Scilit: