The remodelling of skeletal muscle for indefatigable hemodynamic work

Abstract
Skeletal muscle possesses inherent plasticity of gene expression. Low frequency pulse-train stimulation can remodel the biochemical machinery that confers physiological expression and fatigue resistance approaching that of the myocardium. This fatigue-resistant muscle can generate sufficient force to meet the power requirements for useful cardiac work. This ultimate goal is currently being pursued in models of cardiomyoplasty and muscle-powered cardiac assist devices. In this article, we review the three major subcellular systems subserving canine skeletal muscle transformation and compare them to those of cardiac muscle. The magnitude of the problem of clinical heart failure and the feasibility of fatigue-resistant skeletal muscle joining the therapeutic armamentarium are addressed. The adaptation and transformation of fast-twitch skeletal muscle in response to chronic electrical stimulation augers therapeutic potential as an endogenous, readily available power source for myocardial assistance. The basis mechanisms of skeletal muscle fatigue require elucidation to gain a complete and thorough understanding of how to manipulate this property to provide continuous hemodynamic work.Key words: muscle transformation, pulse-train stimulation, cardiomyoplasty, counterpulsation, cardiac assist, myosin isoforms, sarcoplasmic reticulum ATPase, myofibrillar ATPase.

This publication has 0 references indexed in Scilit: