The torsion of the local flow around closed orbits and its relation to the superstructure in the bifurcation set of strictly dissipative nonlinear oscillators is investigated. The torsion number describing the twisting behaviour of the flow turns out to be a suitable invariant for the classification of local bifurcations and resonances in those systems. Furthermore, the notions of winding number and resonance are generalized to arbitrary one-dimensional dissipative oscillators.