Wavelet-based noise removal for biomechanical signals: a comparative study

Abstract
The purpose of this paper is to present wavelet-based noise removal (WBNR) techniques to remove noise from biomechanical acceleration signals obtained from numerical differentiation of displacement data. Manual and semiautomatic methods were used to determine thresholds for both orthogonal and biorthogonal filters. This study also compares the performance of WBNR approaches with four automatic conventional noise removal techniques used in biomechanics. The conclusion of this work is that WBNR techniques are very effective in removing noise from differentiated signals with sharp transients while leaving these transients intact. For biomechanical signals with certain characteristics, WBNR techniques perform better than conventional methods, as indicated by quantitative merit measures.

This publication has 15 references indexed in Scilit: