Factors effecting the thermostability of cysteine proteinases from Carica papaya

Abstract
Thermal denaturation of four Carica papaya cysteine proteinases (papain, chymopapain, papaya proteinases 3 and 4) was studied as a function of pH using high‐sensitivity differential scanning calorimetry. The ratios of calorimetric enthalpy to Van't Hoff enthalpy suggest that, for all these proteins, denaturation occurs as a non two state process, via an intermediate structure. Differences in the thermal stabilities of the proteinases; chymopapain > papaya proteinase 3 > papain > papaya proteinase 4, were correlated to their amino acid sequence to explain the observations in terms of mobility and specific residue mutation. Three‐dimensional structures of papain and papaya proteinase 3 were similarly used to illustrate the influence of atomic mobility on stability.