Abstract
B-cell memory has been extensively analyzed in the systemic immune response elicited by hapten-carrier antigens, and the regulatory mechanisms underlying the process are beginning to be elucidated. Memory B cells can be generated through heterogeneous pathways within and outside germinal centers (GCs). Once developed, they appear to be maintained like stem cells for long periods by homeostatic proliferation. In response to reencountered antigens, memory B cells robustly secrete antibodies with help of the anti-apoptotic effect of Ras-mediated signals. We have recently found that following intranasal infection with an influenza virus, virus-specific memory B cells develop in the lungs and persist for a long time along with GC B cells and plasma cells; this appears to be unique feature of the mucosal memory response. Thus memory B cell responses in the systemic and mucosal sites are regulated by distinct processes and further understanding of them should provide a theoretical framework for the development of new vaccine strategies.