Holography, Quantum Geometry, and Quantum Information Theory
Abstract
We interpret the Holographic Conjecture in terms of quantum bits (qubits). N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labeled by the spin-1/2 representation of SU(2), which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons, which leads to a quantum-computing picture of the early inflationary universe. A discrete micro-causality emerges, where the time parameter is given in terms of the discrete increase of entropy. Then, the model is analysed in the framework of the theory of presheaves (varying sets on a causal set) and we get a quantum history. A (bosonic) Fock space of the whole history is considered. The Fock space wavefunction, which resembles a Bose-Einstein condensate, undergoes decoherence at the end of inflation. This fact seems to be responsible for the rather low entropy of our universe.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: