Adaptive dynamics in diploid, sexual populations and the evolution of reproductive isolation
Open Access
- 22 August 2000
- journal article
- Published by The Royal Society in Proceedings Of The Royal Society B-Biological Sciences
- Vol. 267 (1453) , 1671-1678
- https://doi.org/10.1098/rspb.2000.1194
Abstract
Evolutionary branching is the process whereby an initially monomorphic population evolves to a point where it undergoes disruptive selection and splits up into two phenotypically diverging lineages. We studied evolutionary branching in three models that are ecologically identical but that have different genetic systems. The first model is clonal, the second is sexual diploid with additive genetics on a single locus and the third is like the second but with an additional locus for mate choice. Evolutionary branching occurred under exactly the same ecological circumstances in all three models. After branching the evolutionary dynamics may be qualitatively different. In particular, in the diploid, sexual models there can be multiple evolutionary outcomes whereas in the corresponding clonal model there is only one. We showed that evolutionary branching favours the evolution of (partial) assortative mating and that this in turn effectively restores the results from the clonal model by rendering the alternative outcomes unreachable except for the one that also occurs in the clonal model. The evolution of assortative mating during evolutionary branching can be interpreted as the initial phase of sympatric speciation with phenotypic divergence and partial reproductive isolation.Keywords
This publication has 38 references indexed in Scilit:
- The Evolutionary Ecology of Dominance-RecessivityJournal of Theoretical Biology, 1999
- Evolutionary Branching under Asymmetric CompetitionJournal of Theoretical Biology, 1999
- Evolution of Virulence: a Unified Framework for Coinfection and SuperinfectionJournal of Theoretical Biology, 1998
- Evolutionary stability under the replicator and the gradient dynamicsEvolutionary Ecology, 1997
- Dynamics of Adaptation and Evolutionary BranchingPhysical Review Letters, 1997
- Conditions for sympatric speciation: A diploid model incorporating habitat fidelity and non-habitat assortative matingEvolutionary Ecology, 1996
- Evolutionarily unstable fitness maxima and stable fitness minima of continuous traitsEvolutionary Ecology, 1993
- On Conditions for Evolutionary Stability for a Continuously Varying CharacterThe American Naturalist, 1991
- Evolutionary and continuous stabilityJournal of Theoretical Biology, 1983
- Sympatric speciation: a simulation modelBiological Journal of the Linnean Society, 1979