Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates

Abstract
An aligned and well-distributed carbon nanotubes array was produced by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) substrates. Scanning electron microscope images show that the nanotubes form an aligned array approximately perpendicular to the surface of the PS substrate and the diameters of most of the tubes within the array are 10–30 nm. High-magnification transmission electron microscopy images confirmed that the nanotubes are well graphitized and typically consist of about 15 concentric shells of carbon sheets. Furthermore, the strong field emission from the aligned carbon nanotubes emitter by pyrolysis of hydrocarbons was observed.