Acid-Base Relationships in the Blood of the Toad, Bufo Marinus

Abstract
When Bufo marinus burrows, the skin becomes intimately surrounded by substrate but the nares always remain exposed to the surface air. Upon entering into a state of dormancy the animal hypoventilates and this together with the loss of the skin as a respiratory site results in a rise in arterial blood Pcoco2 despite a probable decline in metabolism. Even though lung ventilation falls, the toad regulates blood pH and the respiratory acidosis is progressively compensated for by a progressive increase in plasma [HCO3-] along the course of an elevated PCOCO2 isopleth. At steady state, the acidosis is fully compensated for by a new equilibrium ratio of HCO3- to PCOCO2 at the same pH as the non-burrowed animal. Arousal from the dormant state at this time results in a marked lung hyperventilation and a sharp decline in body CO2 stores