The Resolution Dependence of Explicitly Modeled Convective Systems
Open Access
- 1 April 1997
- journal article
- Published by American Meteorological Society in Monthly Weather Review
- Vol. 125 (4) , 527-548
- https://doi.org/10.1175/1520-0493(1997)125<0527:trdoem>2.0.co;2
Abstract
The representation of convective processes within mesoscale models with horizontal grid sizes smaller than 20 km has become a major concern for the simulation of mesoscale weather systems. In this paper, the authors investigate the effects of grid resolution on convective processes using a nonhydrostatic cloud model to help clarify the capabilities and limitations of using explicit physics to resolve convection in mesoscale models. By varying the horizontal grid interval between 1 and 12 km, the degradation in model response as the resolution is decreased is documented and the processes that are not properly represented with the coarser resolutions are identified. Results from quasi-three-dimensional squall-line simulations for midlatitude-type environments suggest that resolutions of 4 km are sufficient to reproduce much of the mesoscale structure and evolution of the squall-line-type convective systems produced in 1-km simulations. The evolution at coarser resolutions is characteristically slow... Abstract The representation of convective processes within mesoscale models with horizontal grid sizes smaller than 20 km has become a major concern for the simulation of mesoscale weather systems. In this paper, the authors investigate the effects of grid resolution on convective processes using a nonhydrostatic cloud model to help clarify the capabilities and limitations of using explicit physics to resolve convection in mesoscale models. By varying the horizontal grid interval between 1 and 12 km, the degradation in model response as the resolution is decreased is documented and the processes that are not properly represented with the coarser resolutions are identified. Results from quasi-three-dimensional squall-line simulations for midlatitude-type environments suggest that resolutions of 4 km are sufficient to reproduce much of the mesoscale structure and evolution of the squall-line-type convective systems produced in 1-km simulations. The evolution at coarser resolutions is characteristically slow...Keywords
This publication has 0 references indexed in Scilit: