Progress in supervised neural networks

Abstract
Theoretical results concerning the capabilities and limitations of various neural network models are summarized, and some of their extensions are discussed. The network models considered are divided into two basic categories: static networks and dynamic networks. Unlike static networks, dynamic networks have memory. They fall into three groups: networks with feedforward dynamics, networks with output feedback, and networks with state feedback, which are emphasized in this work. Most of the networks discussed are trained using supervised learning.