An approach to the construction of amperometric biosensors based on the incorporation of an enzyme in silicone grease and using the grease to fill micropores on a graphite surface is described. The enzyme-grease electrode concept, illustrated with the enzyme tyrosinase, offers a very simple, rapid and inexpensive approach to the fabrication of enzyme electrodes. The tyrosinase electrode responds very rapidly to dynamic changes in the concentration of phenolic compounds. A response time (t95%) as low as 5 s has been determined. With flow injection, 120 samples per hour can be processed with a relative standard deviation of 2.4%. The electrode remains active for about 12 d. The detection limit for dopamine is 6 × 10–6 M. This method of biosensor construction should be applicable to other enzyme-substrate systems.