The Relationship between Ribulose Bisphosphate Concentration, Dissolved Inorganic Carbon (DIC) Transport and DIC-Limited Photosynthesis in the Cyanobacterium Synechococcus leopoliensis Grown at Different Concentrations of Inorganic Carbon
- 1 June 1989
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 90 (2) , 720-727
- https://doi.org/10.1104/pp.90.2.720
Abstract
To examine the factors which limit photosynthesis and their role in photosynthetic adaptation to growth at low dissolved inorganic carbon (DIC), Synechococcus leopoliensis was grown at three concentrations (as signified by brackets) of DIC, high (1000-1800 micromolar), intermediate (200-300 micromolar), and low (10-20 micromolar). In all cell types photosynthesis varied from being ribulose bisphosphate (RuBP)-saturated at low external [DIC] to RuBP-limited at high external [DIC]. The maximum rate of photosynthesis (Pmax) was achieved when the internal concentration of RuBP fell below the active site density of RuBP carboxylase/oxygenase (Rubisco). At rates of photosynthesis below Pmax, photosynthetic capacity was limited by the ability of the cell to transport inorganic carbon and to supply CO2 to Rubisco. Adaptation to low DIC was reflected by a decrase in the [DIC] required to half-saturate photosynthesis. Simultaneous mass-spectrometric measurement of rates of photosynthesis and DIC transport showed that the initial slope of the photosynthesis versus [DIC] curve is identical to the initial slope of the DIC transport versus [DIC] curve. This provided evidence that the enhanced capacity for DIC transport which occrs upon adaptation to low [DIC] was responsible for the increase in the initial slope of the photosynthesis versus [DIC] curve and therefore the decrease in the half saturation constant of photosynthesis with respect to DIC. Levels of RuBP and in vitro Rubisco activity varied only slightly between high and intermediate [DIC] grown cells but fell significantly (65-70%) in low [DIC] grown cells. Maximum rates of photosynthesis followed a similar pattern with Pmax only slightly lower in intermediate [DIC] grown cells than in high [DIC] grown cells, but much lower in low [DIC] grown cells. The changing response of photosynthesis to [DIC] during adaptation to low DIC, may be explained by the interaction between DIC-transport limited and [RuBp]-limited photosynthesis.Keywords
This publication has 23 references indexed in Scilit:
- Evidence for Na+-Independent HCO3− Uptake by the Cyanobacterium Synechococcus leopoliensisPlant Physiology, 1987
- Na+-Stimulation of Photosynthesis in the Cyanobacterium Synechococcus UTEX 625 Grown on High Levels of Inorganic CarbonPlant Physiology, 1987
- Nitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutumPlant Physiology, 1986
- Photosynthetic Adaptation by Synechococcus leopoliensis in Response to Exogenous Dissolved Inorganic CarbonPlant Physiology, 1986
- Biosynthesis of a 42-kD Polypeptide in the Cytoplasmic Membrane of the Cyanobacterium Anacystis nidulans Strain R2 during Adaptation to Low CO2 ConcentrationPlant Physiology, 1986
- Purification and Properties of Ribulosebisphosphate Carboxylase Large Subunit Binding ProteinPlant Physiology, 1986
- A Model for HCO3− Accumulation and Photosynthesis in the Cyanobacterium Synechococcus spPlant Physiology, 1985
- Growth and Photosynthesis of the Cyanobacterium Synechococcus leopoliensis in HCO3−-Limited ChemostatsPlant Physiology, 1984
- Induction of HCO3− Transporting Capability and High Photosynthetic Affinity to Inorganic Carbon by Low Concentration of CO2 in Anabaena variabilisPlant Physiology, 1982
- Autocatalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplastsArchives of Biochemistry and Biophysics, 1980