Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle

Abstract
Hammond, T. G., E. Benes, K. C. O’Reilly, D. A. Wolf, R. M. Linnehan, J. H. Kaysen, P. L. Allen, and T. J. Goodwin. Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle. Physiol Genomics 3: 163–173, 2000.—Three-dimensional suspension culture is a gravity-limited phenomenon. The balancing forces necessary to keep the aggregates in suspension increase directly with aggregate size. This leads to a self-propagating cycle of cell damage by balancing forces. Cell culture in microgravity avoids this trade-off. We determined which genes mediate three-dimensional culture of cell and tissue aggregates in the low-shear stress, low-turbulent environment of actual microgravity. Primary cultures of human renal cortical cells were flown on the space shuttle. Cells grown in microgravity and ground-based controls were grown for 6 days and fixed. RNA was extracted, and automated gene array analysis of the expression of 10,000 genes was performed. A select group of genes were regulated in microgravity. These 1,632 genes were independent of known shear stress response element-dependent genes and heat shock proteins. Specific transcription factors underwent large changes in microgravity including the Wilms’ tumor zinc finger protein, and the vitamin D receptor. A specific group of genes, under the control of defined transcription factors, mediate three-dimensional suspension culture under microgravity conditions.