An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Shear Interaction for the Human Annulus Fibrosus
- 16 May 2005
- journal article
- research article
- Published by ASME International in Journal of Applied Mechanics
- Vol. 73 (5) , 815-824
- https://doi.org/10.1115/1.2069987
Abstract
Based on fiber reinforced continuum mechanics theory, an anisotropic hyperelastic constitutive model for the human annulus fibrosus is developed. A strain energy function representing the anisotropic elastic material behavior of the annulus fibrosus is additively decomposed into three parts nominally representing the energy contributions from the matrix, fiber and fiber-matrix shear interaction, respectively. Taking advantage of the laminated structure of the annulus fibrosus with one family of aligned fibers in each lamella, interlamellar fiber-fiber interaction is eliminated, which greatly simplifies the constitutive model. A simple geometric description for the shearing between the fiber and the matrix is developed and this quantity is used in the representation of the fiber-matrix shear interaction energy. Intralamellar fiber-fiber interaction is also encompassed by this interaction term. Experimental data from the literature are used to obtain the material parameters in the constitutive model and to provide model validation. Determination of the material parameters is greatly facilitated by the partition of the strain energy function into matrix, fiber and fiber-matrix shear interaction terms. A straightforward procedure for computation of the material parameters from simple experimental tests is proposed.Keywords
This publication has 27 references indexed in Scilit:
- Shear mechanical properties of human lumbar annulus fibrosusJournal of Orthopaedic Research, 1999
- Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependentJournal of Orthopaedic Research, 1997
- Tensile Properties of Nondegenerate Human Lumbar Anulus FibrosusSpine, 1996
- Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus FibrosusSpine, 1995
- Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus FibrosusSpine, 1994
- Compressive Mechanical Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical CompositionSpine, 1994
- Tensile properties of the annulus fibrosusEuropean Spine Journal, 1993
- Hierarchical Structure of the Intervertebral DiscConnective Tissue Research, 1989
- Epidemiology and Impact of Low-Back PainSpine, 1980
- Mechanical behavior of the human annulus fibrosusJournal of Biomechanics, 1976