Substitution of a conserved aspartate allows cation‐induced polymerization of FtsZ

Abstract
The prokaryotic tubulin homologue FtsZ polymerizes in vitro in a nucleotide dependent fashion. Here we report that replacement of the strictly conserved Asp212 residue of Escherichia coli FtsZ by a Cys or Asn, but not by a Glu residue results in FtsZ that polymerizes with divalent cations in the absence of added GTP. FtsZ D212C and D212N mutants co‐purify with GTP as bound nucleotide, providing an explanation for the unusual phenotype. We conclude that D212 plays a critical role in the coordination of a metal ion and the nucleotide at the interface of two FtsZ monomers.