The consequences of localized, classical magnetic moments in superconductors are explored and their effect on the spectral properties of the intragap bound states is studied. Above a critical moment, a localized quasiparticle excitation in an s-wave superconductor is spontaneously created near a magnetic impurity, inducing a zero-temperature quantum transition. In this transition, the spin quantum number of the ground state changes from zero to 1/2, while the total charge remains the same. In contrast, the spin-unpolarized ground state of a d-wave superconductor is found to be stable for any value of the magnetic moment when the normal-state energy spectrum possesses particle-hole symmetry. The effect of impurity scattering on the quasiparticle states is interpreted in the spirit of relevant symmetries of the clean superconductor. The results obtained by the non-self-consistent (T matrix) and the self-consistent mean-field approximations are compared and qualitative agreement between the two schemes is found in the regime where the coherence length is longer than the Fermi length.