Intraoperative beta probe: A device for detecting tissue labeled with positron or electron emitting isotopes during surgery

Abstract
An intraoperative beta probe was designed, built, and tested for detection of radio-labeled malignant tissues that has the advantage of being selectively sensitive to beta while insensitive to gamma radiation. Since beta radiation (electrons or positrons) has a short range in tissue, this probe is ideal for detecting tracers in tumors at the surface of the surgical field. This probe contains a plastic scintillation detector sensitive to beta rays and to a lesser degree some background gamma rays. A second detector counts spurious gamma rays and allows for their subtraction from the activity measured by the first detector. Sensitivity of the dual probe for I-131 and F-18 was measured to be 108 counts/s/kBq (4000 counts/s/microCi). The dual-detector probe faithfully measured the 10:1 "tumor" to background ratio of radioactivity concentrations in a simulated environment of a tumor in the presence of intense background 511 keV photons. In another phantom experiment, simulating abdominal tumor deposits with various realistic I-131 radioactive concentrations, the probe was able to accurately identify tumors of approximately 50 mg with a tumor/normal radioactivity concentration of 3/1 in 10 s.
Funding Information
  • U.S. Department of Energy (DE‐AC03‐76SF00012)
  • U.S. Public Health Service (CA52477)

This publication has 0 references indexed in Scilit: