Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass
- 10 January 2008
- journal article
- Published by Springer Nature in Journal of Bone and Mineral Metabolism
- Vol. 26 (1) , 73-78
- https://doi.org/10.1007/s00774-007-0786-4
Abstract
The aim of the study was to determine the influence of obesity on bone status in prepubertal children. This study included 20 obese prepubertal children (10.7 ± 1.2 years old) and 23 maturation-matched controls (10.9 ± 1.1 years old). Bone mineral area, bone mineral content (BMC), bone mineral density (BMD), and calculation of bone mineral apparent density (BMAD) at the whole body and lumbar spine (L1–L4) and body composition (lean mass and fat mass) were assessed by DXA. Broadband ultrasound attenuation (BUA) and speed of sound (SOS) at the calcaneus were measured with a BUA imaging device. Expressed as crude values, DXA measurements of BMD at all bone sites and BUA (69.30 versus 59.63 dB/MHz, P < 0.01) were higher in obese children. After adjustment for body weight and lean mass, obese children displayed lower values of whole-body BMD (0.88 versus 0.96 g/cm2, P < 0.05) and BMC (1190.98 versus 1510.24 g, P < 0.01) in comparison to controls. When results were adjusted for fat mass, there was no statistical difference between obese and control children for DXA and ultrasound results. Moreover, whole-body BMAD was lower (0.086 versus 0.099 g/cm3, P < 0.0001), whereas lumbar spine BMAD was greater (0.117 versus 0.100 g/cm3, P < 0.001) in obese children. Thus, it was observed that, in obese children, cortical and trabecular bone displayed different adaptation patterns to their higher body weight. Cortical bone seems to enhance both size and BMC and trabecular bone to enhance BMC. Finally, considering total body weight and lean mass of obese children, these skeletal responses were not sufficient to compensate for the excess load on the whole body.Keywords
This publication has 47 references indexed in Scilit:
- Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific mannerJournal of Bone and Mineral Metabolism, 2005
- Cumulative Effects of Calcium Supplementation and Physical Activity on Bone Accretion in Premenarchal Children: A Double-Blind Randomised Placebo-Controlled TrialInternational Journal of Sports Medicine, 2004
- Bone mineral mass in overweight and obese children: diminished or enhanced?Acta Diabetologica, 2003
- Pediatric body composition in clinical studies: which methods in which situations?Acta Diabetologica, 2003
- Bone Mineral Density in Childhood ObesityJournal of Pediatric Endocrinology and Metabolism, 2000
- Skull Bone Mass Deficit in Prepubertal Highly-Trained Gymnast GirlsInternational Journal of Sports Medicine, 1999
- Moderate Exercise During Growth in Prepubertal Boys: Changes in Bone Mass, Size, Volumetric Density, and Bone Strength: A Controlled Prospective StudyJournal of Bone and Mineral Research, 1998
- Study of lumbar spine bone mineral density in obese childrenActa Paediatrica, 1995
- Spinal bone mineral density in 335 normal and obese children and adolescents: Evidence for ethnic and sex differencesJournal of Bone and Mineral Research, 1991
- Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty.Archives of Disease in Childhood, 1976