A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones
Top Cited Papers
- 1 August 2000
- journal article
- conference paper
- Published by Acoustical Society of America (ASA) in The Journal of the Acoustical Society of America
- Vol. 108 (2) , 679-691
- https://doi.org/10.1121/1.429600
Abstract
The cerebral magnetic field of the auditory steady-state response (SSR) to sinusoidal amplitude-modulated (SAM) tones was recorded in healthy humans. The waveforms of underlying cortical source activity were calculated at multiples of the modulation frequency using the method of source space projection, which improved the signal-to-noise ratio (SNR) by a factor of 2 to 4. Since the complex amplitudes of the cortical source activity were independent of the sensor position in relation to the subject’s head, a comparison of the results across experimental sessions was possible. The effect of modulation frequency on the amplitude and phase of the SSR was investigated at 30 different values between 10 and 98 Hz. At modulation frequencies between 10 and 20 Hz the SNR of harmonics near 40 Hz were predominant over the fundamental SSR. Above 30 Hz the SSR showed an almost sinusoidal waveform with an amplitude maximum at 40 Hz. The amplitude decreased with increasing modulation frequency but was significantly different from the magnetoencephalographic (MEG) background activity up to 98 Hz. Phase response at the fundamental and first harmonic decreased monotonically with increasing modulation frequency. The group delay (apparent latency) showed peaks of 72 ms at 20 Hz, 48 ms at 40 Hz, and 26 ms at 80 Hz. The effects of stimulus intensity, modulation depth, and carrier frequency on amplitude and phase of the SSR were also investigated. The SSR amplitude decreased linearly when stimulus intensity or the modulation depth were decreased in logarithmic steps. SSR amplitude decreased by a factor of 3 when carrier frequency increased from 250 to 4000 Hz. From the phase characteristics, time delays were found in the range of 0 to 6 ms for stimulus intensity, modulation depth, and carrier frequency, which were maximal at low frequencies, low intensities, or maximal modulation depth.Keywords
This publication has 39 references indexed in Scilit:
- Temporal Coding of Amplitude and Frequency Modulation in the Rat Auditory CortexEuropean Journal of Neuroscience, 1995
- Response timing constraints on the cortical representation of sound time structureThe Journal of the Acoustical Society of America, 1990
- Neuromagnetic steady-state responses to auditory stimuliThe Journal of the Acoustical Society of America, 1989
- Topographic distribution of the 40 Hz auditory evoked-Related potential in normal and aged subjectsBrain Topography, 1988
- The Associations Between 40 Hz-EEG and the Middle Latency Response of the Auditory Evoked PotentialInternational Journal of Neuroscience, 1987
- Human Auditory Steady State ResponsesEar & Hearing, 1986
- Effect of Sleep on the Auditory Steady State Evoked PotentialEar & Hearing, 1986
- Human Auditory Steady State PotentialsEar & Hearing, 1984
- COMPARISON OF TRANSIENT AND STEADY‐STATE METHODS*Annals of the New York Academy of Sciences, 1982
- Temporal modulation transfer functions based upon modulation thresholdsThe Journal of the Acoustical Society of America, 1979