Abstract
Oxygen consumption and uptake of waterborne methylmercury were measured for rainbow trout (Salmo gairdneri) forced to swim at sustained swimming speeds at 10 and 20 °C. The concentrations of methylmercury used (< 8 μg Hg∙L−1) did not affect oxygen consumption. The log of mass specific oxygen consumption increased linearly with relative swimming speed. Standard metabolic rates were significantly different (P < 0.05) at 10 and 20 °C (111 and 192 mg O2∙kg−1∙h−1, respectively) but the rate of increase in oxygen consumption with swimming speed was not significantly different between temperatures. The rate of methylmercury uptake was positively correlated with both oxygen consumption and methylmercury concentration. Multiple linear regression equations relating the logs of rate of methylmercury uptake, rate of oxygen consumption, and methylmercury concentration at 10 and 20 °C were contiguous and a single equation described the relationship at both temperatures. The efficiency of methylmercury uptake relative to oxygen was ~0.25 at both temperatures. Assuming an oxygen percent utilization of 33%, the percent utilization of methylmercury from water was ~8%.Key words: methylmercury, uptake, respiration, oxygen consumption, rainbow trout, bioaccumulation, pollutant