Hamiltonian Analysis of the Generalized Problem of Bolza
- 1 May 1987
- journal article
- Published by JSTOR in Transactions of the American Mathematical Society
- Vol. 301 (1) , 385-400
- https://doi.org/10.2307/2000345
Abstract
On étudie le problème généralisé de Bolza en calcul des variations. Presented at the International Conference on the Calculus of Variations held to honour the memory of Leonida Tonelli, Scuola Normale Superiore, Pisa, March 1986. On obtient des conditions nécessaires en forme hamiltonienne, sous des hypothèses moins exigeantes qu’antérieurement, en particulier sans qualification sur les contraintes. Le lien avec les problèmes de contrôle optimal est développé, ainsi que l’apport de ces conditions à la théorie de la régularité de la solution. We obtain necessary conditions in Hamiltonian form for the generalized problem of Bolza in the calculus of variations. These are proven in part by an extension to Hamiltonians of Tonelli’s method of auxiliary Lagrangians. One version of the conditions is of a new character since it is obtained in the absence of any constraint qualification on the data. A new regularity theorem is shown to be a consequence of the necessary conditions.Keywords
This publication has 8 references indexed in Scilit:
- Optimization and Nonsmooth AnalysisPublished by Society for Industrial & Applied Mathematics (SIAM) ,1990
- Extensions of subgradient calculus with applications to optimizationNonlinear Analysis, 1985
- Regularity Properties of Solutions to the Basic Problem in the Calculus of VariationsTransactions of the American Mathematical Society, 1985
- On the conditions under which the euler equation or the maximum principle holdApplied Mathematics & Optimization, 1984
- Sufficient Conditions for the Generalized Problem of BolzaTransactions of the American Mathematical Society, 1983
- Extremal Arcs and Extended Hamiltonian SystemsTransactions of the American Mathematical Society, 1977
- The Generalized Problem of BolzaSIAM Journal on Control and Optimization, 1976
- Existence theorems for general control problems of Bolza and LagrangeAdvances in Mathematics, 1975