Analysis of the axial transmission technique for the assessment of skeletal status

Abstract
Ultrasonic wave propagation in human cortical bone has been investigated in vitro using the so-called axial transmission technique. This technique, which relies on velocity measurement of the first arriving signal, has been used in earlier investigations to study bone status during fracture healing or osteoporosis. Two quasi-point-source elements, one transmitter and one receiver (central frequency 0.5 MHz), were used to generate a wide ultrasonic beam, part of which strikes the sample surface at the longitudinal critical angle, and to receive the signals reflected from the sample surface. The analysis of the field reflected from a fluid-solid interface for an incident spherical wave predicts the existence of a lateral wave propagating along the sample surface at a velocity close to the longitudinal velocity, in addition to the ordinary reflected wave and vibration modes. The transducer-sample and the transmitter-receiver distances were chosen such that the lateral wave is the first arriving signal. Validation of the measuring technique was performed on test materials and was followed by experiments on human cortical bones. Experimental results (arrival time and velocity) strongly suggest that the first detected signal corresponds to the lateral wave predicted by theory.