A hierarchy of hydrodynamical instabilities controlling the transfer of buoyancy through the oceanic mixed layer is reviewed. If a resting ocean of horizontally uniform stratification is subject to spatially uniform buoyancy loss at the sea surface, then gravitational instability ensues in which buoyancy is drawn from depth by upright convection. But if spatial inhomogeneities in the ambient stratification or the forcing are present (as always exist in nature), then horizontal density gradients will be induced and, within a rotation period, horizontal currents in thermal-wind balance with those gradients will be set up within the mixed layer. There are two important consequences on the convective process: Upright convection will become modified by the presence of the thermal wind shear; fluid parcels are exchanged not along vertical paths but, rather, along slanting paths in symmetric instability. Theoretical considerations suggest that this slantwise convection sets the potential vorticity of th... Abstract A hierarchy of hydrodynamical instabilities controlling the transfer of buoyancy through the oceanic mixed layer is reviewed. If a resting ocean of horizontally uniform stratification is subject to spatially uniform buoyancy loss at the sea surface, then gravitational instability ensues in which buoyancy is drawn from depth by upright convection. But if spatial inhomogeneities in the ambient stratification or the forcing are present (as always exist in nature), then horizontal density gradients will be induced and, within a rotation period, horizontal currents in thermal-wind balance with those gradients will be set up within the mixed layer. There are two important consequences on the convective process: Upright convection will become modified by the presence of the thermal wind shear; fluid parcels are exchanged not along vertical paths but, rather, along slanting paths in symmetric instability. Theoretical considerations suggest that this slantwise convection sets the potential vorticity of th...