Abstract
Transform methods for image reconstruction from projections are based on analytic inversion formulas. In this tutorial paper, the inversion formula for the case of two-dimensional (2-D) reconstruction from line integrals is manipulated into a number of different forms, each of which may be discretized to obtain different algorithms for reconstruction from sampled data. For the convolution-backprojection algorithm and the direct Fourier algorithm the emphasis is placed on understanding the relationship between the discrete operations specified by the algorithm and the functional operations expressed by the inversion formula. The performance of the Fourier algorithm may be improved, with negligible extra computation, by interleaving two polar sampling grids in Fourier space. The convolution-backprojection formulas are adapted for the fan-beam geometry, and other reconstruction methods are summarized, including the rho-filtered layergram method, and methods involving expansions in angular harmonics. A standard mathematical process leads to a known formula for iterative reconstruction from projections at a finite number of angles. A new iterative reconstruction algorithm is obtained from this formula by introducing one-dimensional (1-D) and 2-D interpolating functions, applied to sampled projections and images, respectively. These interpolating functions are derived by the same Fourier approach which aids in the development and understanding of the more conventional transform methods.

This publication has 67 references indexed in Scilit: