Mean flows driven by weak eddies in rotating systems

Abstract
General relations are derived for the forcing of a mean zonal flow in a damped rotating barotropic system through the action of weak eddies. In particular it is found that if the eddies are forced at localized latitudes the induced motion away from these latitudes is likely to be counter to the rotation (i.e. ‘easterly’). Over the forcing latitude the mean motion is always westerly except when the forcing provides a sink of relative momentum. In the case when the background field is deformed topographically to generate eddies the divergence of the Reynolds stress is balanced at lowest order by a dynamic pressure drag, and the mean motion takes the direction of propagation of the forcing. The relations are applied to a linearized Rossby wave field in a viscous fluid driven by a moving system of boundary sources and sinks or hills and hollows. The results are compared with laboratory experiments. All major predictions are confirmed qualitatively, but the discrepancies in detail indicate the influence of nonlinear effects other than those incorporated in the theory.

This publication has 5 references indexed in Scilit: