Time-Resolved Fluorescence Microspectroscopy for Characterizing Crude Oils in Bulk and Hydrocarbon-Bearing Fluid Inclusions
Open Access
- 1 September 2004
- journal article
- research article
- Published by SAGE Publications in Applied Spectroscopy
- Vol. 58 (9) , 1106-1115
- https://doi.org/10.1366/0003702041959505
Abstract
Time-resolved fluorescence data was collected from a series of 23 bulk crude petroleum oils and six microscopic hydrocarbon-bearing fluid inclusions (HCFI). The data was collected using a diode laser fluorescence lifetime microscope (DLFLM) over the 460–700 nm spectral range using a 405 nm excitation source. The correlation between intensity averaged lifetimes (τ̄) and chemical and physical parameters was examined with a view to developing a quantitative model for predicting the gross chemical composition of hydrocarbon liquids trapped in HCFI. It was found that τ̄ is nonlinearly correlated with the measured polar and corrected alkane concentrations and that oils can be classified on this basis. However, these correlations all show a large degree of scatter, preventing accurate quantitative prediction of gross chemical composition of the oils. Other parameters such as API gravity and asphaltene, aromatic, and sulfur concentrations do not correlate well with τ̄ measurements. Individual HCFI were analyzed using the DLFLM, and time-resolved fluorescence measurements were compared with τ̄ data from the bulk oils. This enabled the fluid within the inclusions to be classified as either low alkane/high polar or high alkane/low polar. Within the high alkane/low polar group, it was possible to clearly discriminate HCFI from different locales and to see differences in the trapped hydrocarbon fluids from a single geological source. This methodology offers an alternative method for classifying the hydrocarbon content of HCFI and observing small variations in the trapped fluid composition that is less sensitive to fluctuations in the measurement method than fluorescence intensity based methods.Keywords
This publication has 33 references indexed in Scilit:
- Time-Resolved Fluorescence Spectroscopic Study of Crude Petroleum Oils: Influence of Chemical CompositionApplied Spectroscopy, 2004
- Reply to comment by Oxtoby on “Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours”Applied Geochemistry, 2002
- Comments on: Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence coloursApplied Geochemistry, 2002
- Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence coloursApplied Geochemistry, 2001
- Application of spectral fluorescence microscopy for the characterization of Athabasca bitumen vacuum bottomsFuel, 2000
- Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migrationApplied Geochemistry, 1997
- Characterization of hydrocarbon fluid inclusions by infra-red and fluorescence microspectrometryMineralogical Magazine, 1990
- The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirsApplied Geochemistry, 1987
- Application of Micro-FT-IR Spectroscopy to Individual Hydrocarbon Fluid Inclusion AnalysisApplied Spectroscopy, 1987
- Measurement of fluorescence decay of crude oil: A potential technique to identify oil slicksEnvironmental Pollution, 1987