Abstract
The condensational growth and evaporation of liquid droplets in the transition regime and in the continuum regime are considered. An analytical solution that includes both transition regime corrections for mass and heat transfer and the Kelvin effect is derived. The solution represents an improvement over earlier analytical solutions, which are valid only in the continuum regime. The growth (evaporation) times predicted by the analytical solution are compared with the times obtained by a numerical solution. In the transition regime the new analytical expression estimates the growth time within 20%. The closer the saturation ratio is to unity, and the smaller the latent heat of vaporization of the substance in question, the better is the accuracy of the new expression

This publication has 5 references indexed in Scilit: