Noonan Syndrome Mutation Q79R in Shp2 Increases Proliferation of Valve Primordia Mesenchymal Cells via Extracellular Signal–Regulated Kinase 1/2 Signaling
- 14 October 2005
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 97 (8) , 813-820
- https://doi.org/10.1161/01.res.0000186194.06514.b0
Abstract
The molecular pathways regulating valve development are only partially understood. Recent studies indicate that dysregulation of mitogen-activated protein kinase (MAPK) signaling might play a major role in the pathogenesis of congenital valvular malformations, and, in this study, we explored the role of extracellular signal–regulated kinase (ERK) 1/2 activation in valve primordia expressing the Noonan syndrome mutation Q79R-Shp2. Noonan syndrome is an autosomal dominant disease characterized by dysmorphic features and cardiac abnormalities, with frequent pulmonic stenosis. The Q79R mutation of PTPN11 previously identified in Noonan syndrome families results in a gain-of-function of the encoded protein tyrosine phosphatase Shp2. We compared the effects of wild-type Shp2 and Q79R-Shp2 on endocardial cushion development. Atrioventricular and outflow tract endocardial cushions were excised from chick embryos, infected with wild-type Shp2 or Q79R-Shp2 adenovirus and embedded in a gel matrix. Q79R-Shp2, but not wild-type-Shp2, expression resulted in increased outgrowth of cells into the gel. The dependence of the Q79R-Shp2 effect on ERK1/2 and p38 MAPK signaling was then determined. The MAPK/ERK kinase (MEK)-1 inhibitor U0126, but not the p38-MAPK pathway inhibitor SB203580, abolished the effect of Q79R-Shp2 on cushion outgrowth. Coinfection with Q79R-Shp2 and dominant negative MEK-1 prevented enhanced endocardial cushion outgrowth, whereas expression of constitutively active MEK-1 mimicked the effect of Q79R-Shp2. Furthermore, dissociated cushion cells displayed increased 5-bromodeoxyuridine incorporation when infected with Q79R-Shp2 but not with wild-type Shp2. This promitotic effect was eliminated by U0126. Our results demonstrate that ERK1/2 activation is both necessary and sufficient to mediate the hyperproliferative effect of a gain-of-function mutation of Shp2 on mesenchymal cells in valve primordia.Keywords
This publication has 28 references indexed in Scilit:
- Direct and Indirect Interactions between Calcineurin-NFAT and MEK1-Extracellular Signal-Regulated Kinase 1/2 Signaling Pathways Regulate Cardiac Gene Expression and Cellular GrowthMolecular and Cellular Biology, 2005
- A Field of Myocardial-Endocardial NFAT Signaling Underlies Heart Valve MorphogenesisCell, 2004
- MAP kinase activation in avian cardiovascular developmentDevelopmental Dynamics, 2004
- Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activationHuman Mutation, 2004
- Molecular Mechanism for a Role of SHP2 in Epidermal Growth Factor Receptor SignalingMolecular and Cellular Biology, 2003
- The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signalingTrends in Biochemical Sciences, 2003
- Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemiaNature Genetics, 2003
- PTPN11 Mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13Human Mutation, 2002
- The tyrosine phosphatase SHP-2 is required for mediating phosphatidylinositol 3-kinase/Akt activation by growth factorsOncogene, 2001
- The Shp-2 Tyrosine Phosphatase Has Opposite Effects in Mediating the Activation of Extracellular Signal-regulated and c-Jun NH2-terminal Mitogen-activated Protein KinasesJournal of Biological Chemistry, 1998