A chimeric prokaryotic ancestry of mitochondria and primitive eukaryotes

Abstract
We provide data and analysis to support the hypothesis that the ancestor of animal mitochondria (Mt) and many primitive amitochondrial (a-Mt) eukaryotes was a fusion microbe composed of aClostridium-like eubacterium and aSulfolobus-like archaebacterium. The analysis is based on several observations: (i) The genome signatures (dinucleotide relative abundance values) ofClostridiumandSulfolobusare compatible (sufficiently similar) and each has significantly more similarity in genome signatures with animal Mt sequences than do all other available prokaryotes. That stable fusions may require compatibility in genome signatures is suggested by the compatibility of plasmids and hosts. (ii) The expanded energy metabolism of the fusion organism was strongly selective for cementing such a fusion. (iii) The molecular apparatus of endospore formation inClostridiumserves as raw material for the development of the nucleus and cytoplasm of the eukaryotic cell.