Finding zeros of a polynomial by the Q-D algorithm
- 1 September 1965
- journal article
- Published by Association for Computing Machinery (ACM) in Communications of the ACM
- Vol. 8 (9) , 570-574
- https://doi.org/10.1145/365559.365619
Abstract
A method which finds simultaneously all the zeros of a polynomial, developed by H. Rutishauser, has been tested on a number of polynomials with real coefficients. This slowly converging method (the Quotient-Difference (Q-D) algorithm) provides starting values for a Newton or a Bairstow algorithm for more rapid convergence. Necessary and sufficient conditions for the existence of the Q-D scheme are not completely known; however, failure may occur when zeros have equal, or nearly equal magnitudes. Success was achieved, in most of the cases tried, with the failures usually traceable to the equal magnitude difficulty. In some cases, computer roundoff may result in errors which spoil the scheme. Even if the Q-D algorithm does not give all the zeros, it will usually find a majority of them.Keywords
This publication has 6 references indexed in Scilit:
- The evaluation of the zeros of ill-conditioned polynomials. Part INumerische Mathematik, 1959
- Eine Formel von Wronski und ihre Bedeutung für den Quotienten-Differenzen-AlgorithmusZeitschrift für angewandte Mathematik und Physik, 1956
- Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Hilfe des Quotienten-Differenzen-AlgorithmusZeitschrift für angewandte Mathematik und Physik, 1955
- Anwendungen des Quotienten-Differenzen-AlgorithmusZeitschrift für angewandte Mathematik und Physik, 1954
- Zur iterativen Auflösung algebraischer GleichungenZeitschrift für angewandte Mathematik und Physik, 1954
- Der Quotienten-Differenzen-AlgorithmusZeitschrift für angewandte Mathematik und Physik, 1954