Probing temperature during laser spot welding from vapor composition and modeling

Abstract
Measurement of weld pool temperature during laser spot welding is a difficult task because of the short pulse duration, often lasting only a few milliseconds, highly transient nature of the process, and the presence of a metal vapor plume near the weld pool. This article describes recent research to estimate weld pool temperatures experimentally and theoretically. Composition of the metal vapor from the weld pool was determined by condensing a portion of the vapor on the inner surface of an open ended quartz tube which was mounted perpendicular to the sample surface and coaxial with the laser beam. It was found that iron, chromium, and manganese were the main metallic species in the vapor phase. The concentrations of Fe and Cr in the vapor increased slightly while the concentration of Mn in the vapor decreased somewhat with the increase in power density. The vapor composition was used to determine an effective temperature of the weld pool. A transient, three-dimensional numerical heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy was used to calculate the temperature and velocity fields in the weld pool as a function of time. The experimentally determined geometry of the spot welds agreed well with that determined from the computed temperature field. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. Because of the short process duration and other serious problems in the direct measurement of temperature during laser spot welding, estimating approximate values of peak temperature from metal vapor composition is particularly valuable.