Distances, ages, and epoch of formation of globular clusters

Abstract
We review the results on distances and absolute ages of galactic globular clusters (GCs) obtained after the release of the Hipparcos catalogue. Several methods for the Population II local distance scale are discussed, exploiting NEW RESULTS for RR Lyraes in the Large Magellanic Cloud (LMC). We find that the so-called Short and Long Distance Scales may be reconciled whether a consistent reddening scale is adopted for Cepheids and RR Lyrae variables in the LMC. Distances and ages for the 9 clusters discussed in Paper I are re-derived using an enlarged sample of local subdwarfs, which includes about 90% of the metal-poor dwarfs with accurate parallaxes (Delta p/p < 0.12) in the whole Hipparcos catalogue. On average, our revised distance moduli are decreased by 0.04 mag with respect to Paper I. The corresponding age of the GCs is t=11.5+-2.6 Gyr (95% confidence range). The relation between Mv(ZAHB) and metallicity for the nine programme clusters turns out to be Mv(ZAHB)=(0.18+-0.09)([Fe/H]+1.5)+(0.53+-0.12).Thanks to Hipparcos the major contribution to the total error budget associated with the subdwarf fitting technique has been moved from parallaxes to photometric calibrations, reddening and metallicity scale. This total uncertainty still amounts to about +-0.12 mag. Comparing the corresponding (true) LMC distance modulus 18.64+-0.12 mag with other existing determinations, we conclude that at present the best estimate for the distance of the LMC is: 18.54+-0.03+-0.06, suggesting that distances from the subdwarf fitting method are 1 sigma too long. Consequently, our best estimate for the age of the GCs is revised to: Age = 12.9+-2.9 Gyr (95% confidence range). The best relation between Mv(ZAHB) and [Fe/H] is: Mv(ZAHB) =(0.18+-0.09)([Fe/H]+1.5)+(0.63+-0.07).

This publication has 0 references indexed in Scilit: