Immunochemically detectable phytochrome is present at normal levels but is photochemically nonfunctional in the hy 1 and hy 2 long hypocotyl mutants of Arabidopsis
- 1 April 1989
- journal article
- conference paper
- Published by Springer Nature in Plant Molecular Biology
- Vol. 12 (4) , 425-437
- https://doi.org/10.1007/bf00017582
Abstract
The hy 1 and hy 2 long hypocotyl mutants of Arabidopsis thaliana contain less than 20% (the detection limit) of the phytochrome in wild-type tissue as measured by in vivo difference spectroscopy. In contrast, spectral measurements for the hy 3, hy 4, and hy 5 long hypocotyl mutants indicate that they each contain levels of phytochrome equivalent to the wild-type parent. Immunoblot analysis using a monoclonal antibody directed against the chromophore-bearing region of etiolated-oat phytochrome demonstrates that extracts of all mutant and wild-type Arabidopsis tissues, prepared by extraction of proteins into hot SDS-containing buffer, have identical levels of one major immunodetectable protein (116 kDa). An assay involving controlled in vitro proteolysis, known to produce distinctive fragmentation patterns for Pr and Pfr (Vierstra RD, Quail PH, Planta 156: 158–165, 1982), indicates that the 116 kDa polypeptide from the wild-type parent represents Arabidopsis phytochrome. The 116 kDa protein from either hy 3, hy 4, or hy 5 displays the same fragmentation pattern found for the wild type. Together with the spectral data, these results indicate that the mutant phenotype of these variants does not involve lesions in the polypeptide sequence that lead to gross conformational aberrations, and suggest that the genetic lesions may affect steps in the transduction chain downstream of the photoreceptor. In contrast, this same analysis for hy 1 and hy 2 has revealed that the 116 kDa protein from either of these mutants is not degraded differently in response to the different wavelengths of irradiation given in vitro. Moreover, whereas immunoblot analysis of tissue extracts from light-grown wild-type seedlings show that the 116 kDa phytochrome protein level is greatly reduced relative to dark-grown tissue as expected, similar extracts of light-grown hy 1 and hy 2 seedlings contain the 116 kDa polypeptide in amounts equivalent to those of dark-grown tissue. Combined, these data indicate that the hy 1 and hy 2 mutants both produce normal levels of immunochemically detectable phytochrome that is photochemically nonfunctional.Keywords
This publication has 45 references indexed in Scilit:
- Gene regulation by phytochromeTrends in Genetics, 1988
- Phytochrome Chromophore BiosynthesisPlant Physiology, 1987
- Synthesis of Phytochrome Apoprotein and Chromophore Are Not Coupled ObligatorilyPlant Physiology, 1986
- PROGRESS IN THE MOLECULAR ANALYSIS OF PHYTOCHROMEPhotochemistry and Photobiology, 1985
- Spectral Characterization and Proteolytic Mapping of Native 120-Kilodalton Phytochrome from Cucurbita pepo L.Plant Physiology, 1985
- Inhibition of Phytochrome Synthesis by GabaculinePlant Physiology, 1985
- Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocelluloseGene Analysis Techniques, 1984
- Phytochrome: molecular properties and biogenesisPhilosophical Transactions of the Royal Society of London. B, Biological Sciences, 1983
- Chromopeptides from phytochrome. The structure and linkage of the PR form of the phytochrome chromophoreJournal of the American Chemical Society, 1980
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970