Structural basis of membrane binding by Gla domains of vitamin K–dependent proteins

Abstract
In a calcium-dependent interaction critical for blood coagulation, vitamin K–dependent blood coagulation proteins bind cell membranes containing phosphatidylserine via γ-carboxyglutamic acid–rich (Gla) domains. Gla domain–mediated protein-membrane interaction is required for generation of thrombin, the terminal enzyme in the coagulation cascade, on a physiologic time scale. We determined by X-ray crystallography and NMR spectroscopy the lysophosphatidylserine-binding site in the bovine prothrombin Gla domain. The serine head group binds Gla domain–bound calcium ions and Gla residues 17 and 21, fixed elements of the Gla domain fold, predicting the structural basis for phosphatidylserine specificity among Gla domains. Gla domains provide a unique mechanism for protein-phospholipid membrane interaction. Increasingly Gla domains are being identified in proteins unrelated to blood coagulation. Thus, this membrane-binding mechanism may be important in other physiologic processes.