Abstract
The effects of structural modifications of the flavin FMN prosthetic group of Clostridium pasteurianum flavodoxin on the kinetics of electron transfer to the oxidized form (from 5-deazariboflavin semiquinone produced by laser flash photolysis) and from the semiquinone form (to horse heart cytochrome c by using stopped-flow spectrophotometry) were investigated. The analogs used were 7,8-dichloro-FMN, 8-chloro-FMN, 7-chloro-FMN, and 5,6,7,8-tetrahydro-FMN. The ionic strength dependence of cytochrome c reduction was not affected by Cl substitution, although the specific rate constants for complex formation and decay were appreciably smaller. All of the Cl analogues had the same rate constant for deazariboflavin semiquinone oxidation. The rate constants for tetrahydro-FMN flavodoxin semiquinone reduction of cytochrome c were considerably smaller than those for the native protein. The implications of these results for the electron-transfer mechanism of flavodoxin are discussed.