Evaluation of Organic Monolayers Formed on Si(111): Exploring the Possibilities for Application in Electron Beam Nanoscale Patterning

Abstract
The methods of preparing organic monolayers on Si(111), the effects of electron-beam irradiation onto these monolayers, and the deposition of metal atoms over the irradiated areas have been investigated in order to develop a process of mass-scale production of nanometer-scale patterns on Si(111) wafer surfaces. The organic monolayers were fabricated on hydrogen-terminated Si(111) wafer surfaces using previously reported methods for the electrolysis of para-substituted benzenediazonium salts and the Grignard reaction with various alkyl moieties and reaction procedures. Using these electrolysis methods, partially well-defined two-dimensional monolayers were formed, which were, however, obscured by precipitated by-products. The Grignard reaction deposited homogeneous monolayer moieties of alkyl groups which were randomly arranged and are suitable for surface passivation. Electron-beam bombardment of the organic monolayers on Si(111) was performed in an atmosphere of O2 or H2O. The bombarded area was effectively oxidized in a well-controlled manner. By immersing the bombarded specimen into an aqueous NiSO4+(NH4)2SO4 solution, Ni was selectively impregnated only within the area of electron bombardment. Based on these results, application of organic monolayers for fabricating nanometer-scale monolayer patterns is proposed.