Nuclear Accumulation of Influenza Viral RNA Transcripts and the Effects of Cycloheximide, Actinomycin D, and α-Amanitin

Abstract
The use of virus-specific 32 P-labeled complementary DNA and 125 I-labeled virion RNA as hybridization probes has allowed us to quantitate the number of molecules of complementary RNA (cRNA) and progeny virion RNA in MDCK cells infected with influenza virus. We compared the distribution of cRNA between the nucleus and the cytoplasm in cycloheximide-treated cells to that found in untreated cells, beginning 1 h after infection. A greater percentage of the total cRNA was detected in the nucleus of the drug-treated cells at all times investigated. For the first 2 h after infection about 50% of the cRNA synthesized in the cycloheximide-treated cells was found in the nucleus. These nuclear cRNA molecules were characterized and shown to be polyadenylated transcripts of each of the genome virion RNA segments. Viral cRNA synthesis was not completely inhibited by the addition of actinomycin D at the beginning of infection, with or without the concomitant addition of cycloheximide. A large fraction (about 90%) of these cRNA sequences were detected in the nucleus. Characterization of these nuclear cRNA molecules showed that they contained polyadenylic acid and represented transcripts of both those segments coding for proteins synthesized predominantly early after infection (“early” proteins) and those virion RNA segments coding for “late” proteins. Also, in vitro translation of these cRNA molecules showed that they were functional virus mRNA's. In contrast to actinomycin D, α-amanitin completely inhibited cRNA synthesis when added at the beginning of infection, and addition of this drug after 1.5 h had no effect on further cRNA synthesis.