Climatic influence on a marine fish assemblage

Abstract
Understanding the fluctuations in marine fish stocks is important for the management of fisheries, and attempts have been made to demonstrate links with oceanographic and climatic variability1,2,3, including the North Atlantic Oscillation (NAO)4,5. The NAO has been correlated with a range of long-term ecological measures6,7, including certain fish stocks8,9. Such environmental influences are most likely to affect susceptible juveniles10 during estuarine residency, as estuaries are critical juvenile nursery or over-wintering habitats11. Here we show that, during a 16-year period, climatic forcing (by means of the NAO) is consistently the most important parameter explaining variation in assemblage composition, abundance and growth of juvenile marine fish during estuarine residency. A possible mechanism for the effect of the NAO is a temperature differential between estuarine and marine waters that allows fish to facultatively exploit optimal thermal habitats. The connection has potentially important implications for the size and numbers of individuals recruited to the fishery, for understanding and predicting the composition of juvenile fish stocks using estuaries, and for the appropriate conservation of estuarine systems in relation to fish stocks.