Synthesis, activity, and preliminary structure of the fourth EGF-like domain of thrombomodulin
Open Access
- 1 September 1995
- journal article
- research article
- Published by Wiley in Protein Science
- Vol. 4 (9) , 1683-1695
- https://doi.org/10.1002/pro.5560040904
Abstract
The fourth EGF-like domain of thrombomodulin (TM4), residues E346-F389 in the TM sequence, has been synthesized. Refolding of the synthetic product under redox conditions gave a single major product. The disulfide bonding pattern of the folded, oxidized domain was (1–3, 2–4, 5–6), which is the same as that found in EGF protein. TM4 was tested for TM anticoagulant activity because deletion and substitution mutagenesis experiments have shown that the fourth EGF-like domain of TM is essential for TM cofactor activity. TM4 showed no TM-like activity in two assay systems, both for inhibition of fibrin clot formation, and for cofactor activity in thrombin activation of protein C. A preliminary structure of TM4 was determined by 2D 1H NMR from 519 NOE-derived distance constraints. Distance geometry calculations yielded a single convergent structure. The structure resembles the structure of EGF and other known EGF-like domains but has some key differences. The central two-stranded β-sheet is conserved despite the differences in the number of amino acids in the loops. The C-terminal loop formed by the disulfide bond between C372 and C386 in TM4 is five amino acids longer than the analogous loop between C33 and C42 of EGF protein. This loop appears to have a different fold in TM4 than in EGF protein. The loop forms the two outside strands of a broken, irregular tri-stranded β-sheet, and amino acids H384-F389 lie between the two strands forming the middle strand of the sheet. Thus, although the C-terminus of EGF protein forms one of the outside strands of a tri-stranded antiparallel sheet, the C-terminus of TM4 forms the inside strand of an irregular tri-stranded parallel-antiparallel sheet. The residues D349, E357, and E374, which were shown to be critical for cofactor activity by alanine scanning mutagenesis, all lie in a patch near the C-terminal loop, and are solvent accessible. The other critical residues, Y358 and F376, are largely buried and appear to play essential structural rather than functional roles.Keywords
This publication has 48 references indexed in Scilit:
- Determination of three‐dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms Circumventing problems associated with foldingPublished by Wiley ,2001
- Solution structure of human type-.alpha. transforming growth factor determined by heteronuclear NMR spectroscopy and refined by energy minimization with restraintsBiochemistry, 1993
- Human epidermal growth factorJournal of Molecular Biology, 1992
- Conformational stability of a thrombin-binding peptide derived from the hirudin C-terminusBiochemistry, 1992
- Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSAJournal of Molecular Biology, 1991
- Improved solvent suppression in one- and two-dimensional NMR spectra by convolution of time-domain dataJournal of Magnetic Resonance (1969), 1989
- Elimination of baseline distortions and minimization of artifacts from phased 2D NMR spectraJournal of Magnetic Resonance (1969), 1989
- Calculation of protein conformations by proton-proton distance constraintsJournal of Molecular Biology, 1985
- Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteinsBiochemical and Biophysical Research Communications, 1983
- A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromoleculesBiochemical and Biophysical Research Communications, 1980