Proton Magnetic Resonance Chemical Shift of Free (Gaseous) and Associated (Liquid) Hydride Molecules

Abstract
In order to study the factors giving rise to protonresonancechemical shifts of free molecules, as well as the association shifts due to hydrogen bonding,protonresonance measurements were carried out for a variety of simple hydride molecules in both the liquid and gaseous states. It is found that the proton shifts in the gaseous state can be interpreted in terms of the combined effect of the electronegativity and magnetic anisotropy of the atom to which the proton is bonded. The proton signals measured in the liquid state near the melting point, which correspond to maximum association, show large shifts to lower magnetic field relative to the corresponding gas signals. It is suggested that the association, or hydrogen bond shifts, in a system Y ——— H — X can be interpreted largely in terms of the reduction of the diamagnetic circulation in the H — X bond by the electrostatic field of the Y donor. Further possible contributions in certain anomalous cases are also considered.

This publication has 10 references indexed in Scilit: