Ultrastructural cytochemistry and immunocytochemistry of proteoglycans associated with epiphyseal cartilage calcification.

Abstract
Proteoglycans (PGs) are closely associated with cartilage calcification. We have examined the hypertrophic zone of rat epiphyseal cartilage, in which calcification is occurring, using the high-iron diamine-thiocarbohydrazide-silver proteinate (HID-TCH-SP) method for sulfated glycosaminoglycans, an immunoferritin method specific for chondroitin sulfate A, and the tannic acid-ferric chloride (TA-Fe) method to stain cartilage matrix granules (MGs) presumed to be PG monomers. HID-TCH-SP produced stain deposits with a diameter of 11.2 +/- 3.2 nm (mean +/- SD; n = 200) in the MGs. However, HID-TCH-SP staining was not discernible in membrane-limited matrix vesicles (MVs). In areas of advanced calcification, partially disrupted MVs and globular bodies (GBs), derived in part from disrupted and/or degenerated MVs, contained a few too many small HID-TCH-SP stain deposits. Further down the epiphyseal cartilage, intact MVs markedly decreased and the GBs, containing many small HID-TCH-SP stain deposits, significantly increased in number. These GBs were found exclusively in the longitudinal septa rather than in the transverse septa. After enzyme digestion with testicular hyaluronidase, small (7.2 +/- 1.2 nm in diameter) stain deposits remained in the MGs and GBs, presumably localized to keratan sulfate. Immunoferritin localizing chondroitin sulfate strongly stained MGs, whereas MVs and GBs lacked staining. TA-Fe staining of glycoconjugates in the GBs demonstrated a striking decrease in the diameter of MGs associated with calcification in the GBs as compared with those in the noncalcifying area around the GBs. These results indicate that the GBs containing needle-like apatite crystals in morphologic preparations represent sites of chondroitin sulfate degradation. Testicular hyaluronidase-resistant sulfated glycosaminoglycans presumed to be keratan sulfate and partially degraded PGs selectively remain within the GBs as a probable requisite for expansion of the initial calcification in MVs.

This publication has 17 references indexed in Scilit: