Abstract
Predictions of the evolutionary trajectory of reaction norms and interpretation of empirical results are usually based on two mathematically equivalent ways of partitioning phenotypic variance into its genetic, environmental, and interaction components: the genotype by environment interaction estimated by means of an analysis of variance, or the interenvironment genetic correlation (i.e. the genetic correlation between the expressions of the same trait in two environments). Both these quantities are supposed to indicate the amount of genetic variability for plasticity in natural population. I point out that not only are the qualitative predictions based on these statistical methods sometimes in conflict with each other, but that both may fail to predict rates of evolution and equilibria under some circumstances, because they ignore the details of the genetic machinery. It is shown that, ultimately, the only way to predict reliably the evolution of plasticity is actually to know its specific genetic basis and the genotypic constitution of the population, however inconvenient this may be from both theoretical and empirical standpoints. The discussion is framed in terms of a simple one-locus two-allele model that mimics the real case of the pennant/vestigial system describing plasticity of wing length to temperature in Drosophila melanogaster.