Mechanisms of Injury in the Central Nervous System
Open Access
- 1 January 2000
- journal article
- research article
- Published by SAGE Publications in Toxicologic Pathology
- Vol. 28 (1) , 43-53
- https://doi.org/10.1177/019262330002800107
Abstract
Neurotoxicants with similar structural features or common mechanisms of chemical action frequently produce widely divergent neuropathologic outcomes. Methylmercury (MeHg) produces marked cerebellar dysmorphogenesis during critical periods of development. The pathologic picture is characterized by complete architectural disruption of neuronal elements within the cerebellum. MeHg binds strongly to protein and soluble sulphydryl groups. Binding to microtubular -SH groups results in catastrophic depolymerization of immature tyrosinated microtubules. However, more mature acetylated microtubules are resistant to MeHg-induced depolymerization. In contrast to MeHg, the structurally similar organotin trimethyltin (TMT) elicits specific apoptotic destruction of pyramidal neurons in the CA3 region of the hippocampus and in other limbic structures. Expression of the phylogenetically conserved protein stannin is required for development of TMT-induced lesions. Inhibition of expression using antisense oligonucleotides against stannin protects neurons from the effects of TMT, suggesting that this protein is required for expression of neurotoxicity. However, expression of stannin alone is insufficient for induction of apoptotic pathways in neuronal populations. The aromatic nitrocompound 1,3-dinitrobenzene (DNB) has 2 independent nitro groups that can redox cycle in the presence of molecular oxygen. Despite its ability to deplete neural glutathione stores, DNB produces edematous gliovascular lesions in the brain stem of rats. Glial cells are susceptible despite high concentrations of reduced glutathione compared with neuronal somata in the central nervous system (CNS). The severity of lesions produced by DNB is modulated by the activity of neurons in the affected pathways. The inherent discrepancy between susceptibility of neuronal and glial cell populations is likely mediated by differential control of the mitochondrial permeability transition in astrocytes and neurons. Lessons learned in the mechanistic investigation of neurotoxicants suggest caution in the evaluation and interpretation of structure-activity relationships, eg, TMT, MeHg, and DNB all induce oxidative stress, whereas TMT and triethyltin produce neuronal damage and myelin edema, respectively. The precise CNS molecular targets of cell-specific lipophilic neurotoxicants remain to be determined.Keywords
This publication has 89 references indexed in Scilit:
- Activation of Protein Kinase C by Trimethyltin: Relevance to NeurotoxicityJournal of Neurochemistry, 1995
- The neuroprotective effect of tacrine on trimethyltin induced memory and muscarinic receptor dysfunction in the ratNeurochemistry International, 1994
- The neurotoxicity of α‐chlorohydrin in rats and mice: I. Evolution of the cellular changesNeuropathology and Applied Neurobiology, 1993
- Glutathione disulfide reduction in tumor mitochondria after t-butyl hydroperoxide treatmentChemico-Biological Interactions, 1992
- Neurotoxicology in the 1990sNeurotoxicology and Teratology, 1990
- 2-1. THE NEUROTOXICOLOGY AND PATHOLOGY OF ORGANOMERCURY, ORGANOLEAD, AND ORGANOTIN (< ?? ?? ?? ?? ?? ?? (2)>「Environmental toxicology」)The Journal of Toxicological Sciences, 1990
- Methyl mercury-induced combined inhibition of atp regeneration and protein synthesis in reticulocyte lysate cell-free translation systemToxicology Letters, 1986
- EVOLUTION OF THE INTRACELLULAR CHANGES IN NEURONS CAUSED BY TRIMETHYLTINNeuropathology and Applied Neurobiology, 1984
- Pathological effects of in utero methylmercury exposure on the cerebellum of the golden hamsterEnvironmental Research, 1981
- Dietary selenium protection of methylmercury intoxication of Japanese quailBulletin of Environmental Contamination and Toxicology, 1974