Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models.

  • 1 May 2000
    • journal article
    • Vol. 60  (9) , 2547-54
Abstract
Testosterone-repressed prostate message-2 (TRPM-2) expression is highly up-regulated in normal and malignant prostate cells after androgen withdrawal. Although recent studies have suggested a protective role of TRPM-2 expression against apoptosis in several experimental models, the functional role of TRPM-2 in chemotherapy-induced apoptosis remains undefined. Here, we demonstrated that overexpression of TRPM-2 in human androgen-dependent LNCaP prostate cancer cells by stable transfection rendered them highly resistant to paclitaxel treatment than control LNCaP cells, with a 20-fold higher IC50 through the inhibition of apoptotic cell death. In mice bearing TRPM-2-overexpressing LNCaP tumors, tumor volume and serum prostate-specific antigen increased two to three times faster after castration and paclitaxel treatment compared with mice bearing control tumors. We then tested the efficacy of combined treatment with antisense TRPM-2 oligodeoxynucleotide (ODN) and paclitaxel in the mouse androgen-dependent Shionogi tumor model. Antisense TRPM-2 ODN treatment significantly enhanced paclitaxel chemosensitivity of Shionogi tumor cells in a dose-dependent manner, reducing the IC50 by 75%. Combined treatment of Shionogi cells with 500 nM antisense TRPM-2 ODN and 10 nM paclitaxel-induced apoptosis, either agent alone did not. Adjuvant administration of antisense TRPM-2 ODN and polymeric micellar paclitaxel after castration resulted in reduced TRPM-2 levels in vivo and a significant delay of emergence of androgen-independent recurrent Shionogi tumors compared with administration of either agent alone. Furthermore, combined treatment of mice bearing androgen-independent recurrent Shionogi tumors with antisense TRPM-2 ODN and micellar paclitaxel inhibited tumor growth compared with treatment with either agent alone. Collectively, these findings demonstrate that TRPM-2 overexpression helps confer a chemoresistant phenotype through inhibition of apoptosis, and that antisense TRPM-2 ODN may be useful in enhancing the effects of cytotoxic chemotherapy in hormone-refractory prostate cancer.

This publication has 0 references indexed in Scilit: