Nimbus-7 Global Cloud Climatology. Part II: First Year Results

Abstract
Regional and seasonal variations in global cloud cover observed by the Nimbus-7 satellite over 1 year are analyzed by examining the 4 midseason months—April, July and October 1979 and January 1980. The Nimbus-7 data set is generated from the Temperature Humidity Infrared Radiometer (THIR) 11.5 micron radiances together with Total Ozone Mapping Spectometer (TOMS)-derived UV reflectivities, climatological atmospheric temperature lapse rates, and concurrent surface temperature and snow/ice information from the Air Force three-dimensional-nephanalysis (3DN) archive. The analysis presented here includes total cloud amount, cloud amounts at high, middle and low altitudes, cirrus and deep convective clouds and cloud and cloud-sky 11.5 micron-derived radiances. Also, noon versus midnight cloud amounts are examined and the Nimbus-7 data are compared to three previously published cloud climatologies. The Nimbus-7 bispectral algorithm gives a monthly mean global noontime cloud cover of 51%, averaged over th... Abstract Regional and seasonal variations in global cloud cover observed by the Nimbus-7 satellite over 1 year are analyzed by examining the 4 midseason months—April, July and October 1979 and January 1980. The Nimbus-7 data set is generated from the Temperature Humidity Infrared Radiometer (THIR) 11.5 micron radiances together with Total Ozone Mapping Spectometer (TOMS)-derived UV reflectivities, climatological atmospheric temperature lapse rates, and concurrent surface temperature and snow/ice information from the Air Force three-dimensional-nephanalysis (3DN) archive. The analysis presented here includes total cloud amount, cloud amounts at high, middle and low altitudes, cirrus and deep convective clouds and cloud and cloud-sky 11.5 micron-derived radiances. Also, noon versus midnight cloud amounts are examined and the Nimbus-7 data are compared to three previously published cloud climatologies. The Nimbus-7 bispectral algorithm gives a monthly mean global noontime cloud cover of 51%, averaged over th...